ANALISA STRUCTURE
Assumptions about Distribution
+m ( ∑ MB
= 0 Ay (L)
– Ph = 0 Ay
By using these approximate reactions. The
approximate shean bending moment. And axial force diagrams for the frame can be
constructed by considering the equilibrium of it members and joints. The
bending moment diagrams for the members of the frame are shown in fig. 12.1 (c)
Assumptions
about Distribution of Forces among Members and /or Reactions
Approximate analysis of
indeterminate structures is sometimes performed by making assumptions about the
distribution of forces among the members and/or reaction of the structures. The
number of such assumption required for the analysis of a structure is equal to
the degree of indeterminacy of the structure. With each assumption providing an
independent equation relating the unknown member forces and/or reaction. The
equations base on these assumtions are then solved simultaneously with the
equilibrium equations of the structure to determine its approximate reactions
and internal forces. For example the portal frame of fig. 12.1(a) can
alternatively be analyzed by assuming that the horizontal reactions Ax And
Bx are equal : that is , Ax = Bx. By solving
this equation simultaneously with the three equilibrium equations of the frame.
We obtain the same reactions as previously determined by assuming an inflection
point at the midpoint of the girded CD of the frame.
The two types of assumptions
described in this sections can either be used individually of they can be
combined with each other and/or with other types of assumptions based on the
engineering judgment of the structural response to develop methods for
approximate analysis of various types of structures. In the rest of this
chapter, we focus our attention on the approximate analysis of rectangular
building frames.
12.2 ANALYSIS FOR VERTICAL OADS
Recall from section 5.5 that the degree of
indeterminacy of a rectangular building frame with fixed supports is equal to
three times the number of girders in the frame provided that the frame does not
contain any internal hinges or rollers. This in an approximate analysis of such
a rigid frame, the total number of assumptions required is equal to three times
the number of girders frame.
A
commonly used procedure for approximate analysis of rectangular building frames
subjected to vertical (gravity) loads involves making three assumtions about
the behavior of each girder of the frame. Consider a frame subjected to uniformly
distributed loads w,as shown Fig. 12.2 (b). The free body diagram of a typical
girder DE of the frame is shown in Fig. 12.2(b). From the deflected shape of
the girder sketched in the figure, we observe that two inflection points exits
near both ends of the girder. These inflection points develop because the
columns and the adjecent girder connected to the ends of girder DE offer
partial restraint or resistance againts rotation by exerting negative moments MDE
dan MED at the girder ends D dan E, respectively. Although the
exact location of the inflection points depends on the relative stiffnesses of
the frame members and can be determited only from an exact analysis, we can
establish the regions along the girder in which these points are located by
examming the two extreme counditions of rotational restraint at the girder ends
shown in fig. 12.2(c) and (d). If the girder ends were free to rotate , as in
the case of a simply supported girded (Fig.12.2(c)), the zero bending moments and this the inflection
points would occur at the ends. On the other extreme, if the girder ends were
completely fixed againts rotation, we can show by the exact analysis presented
in subsequent chapters that the inflection points would occur at a distance of
0.211L from each end of the girder, as ilustrated in fig. 12.2 (d). Therefore,
when the girder ends are only partially restrained against rotation (Fig
12.2(b)), the inflection poit must occur somewhere within a distance of 0.211L
from each end. For the purpose of approximate analysis, it is common practice
to assume that the inflection points are located about halfway between the two
extremes that is, at a distance of 0,1L
from each end of the girder. Estimating the location of two inflection points
in volves making two assumption about the behavior of the girder. The third
assumption is based on the experience gained from the exact analyses of
rectangular frames subjected to vertical loads only, which indicates that the
axial forces in girders of such frames are usually very small. Thus, in an
approximate analysis, it is reasonable to assume that the girder axial forces
and zero.
To summarize the foregoing
discussion, in the approximate analysis of a rectangular frame subjected to
vertical loads the following assumptions are made for each girder of the frame
:
1. The
inflection points are located at one-tenth of the span from each endof the
girder.
2. The
girder axial force is zero.
The effect of these simplifying assumptions
is that the middle eight-of the span (0,8L) of each girder can be considered to
be simply supported on the two ends portions of the girder, each of which is of
the length equal to one lenth of the girder span (1,1L), as shown in Fig. 12.2
(e). Note that the girders are now statically determinate and their end forces
and moments can be determined from static, as shown in the figure, it should be
realized that by making.
MUSTAFA KAMAL / 1204101010155 TEKNIK SIPIL UNSYIAH
No comments:
Post a Comment